Abstract:Based on the panel data of 280 cities at prefecture-level and above in China from 2011 to 2019, this paper systematically explores the impact and mechanism of digital economy on carbon emissions from the factor role shift perspective. By constructing the moderating effect model, the moderating effect of digital economy on the three main carbon emission factors of population, economy and technology is empirically tested, and the threshold heterogeneous effect of technological progress in the process of digital driven emission reduction under SFA measurement method is further investigated. The study reveals the following findings: First, the relationship between digital economy and carbon emissions still follows an EKC curve. Second, the impact of digital economy on carbon reduction has a late-mover disadvantage of diminishing marginal returns. Non-mega cities and the last three tier cities will become difficult and pain points of digital-driven emission reduction in the future. Third, although the development of urban digital economy can significantly improve the positive correlation between traditional economic factors, demographic factors and carbon emissions, it triggers a rebound effect of technological factors. Fourth, technological level plays a “double threshold” role in the emission reduction effect of digital economy. Therefore, the government should accelerate the transformation of energy structure, promote the construction of city clusters and smart cities, strengthen the digital transformation of industries and cultivate digital talents, and actively promote the carbon trading system in order to help achieve the “double carbon” goal.
陈镜宇, 李卫东, 刘延平, 武冰玉. 数字经济、要素作用转变与城市碳排放 ——基于调节效应和门槛效应的检验[J]. 北京交通大学学报(社会科学版), 2024, 23(2): 137-151.
CHEN Jing-yu, LI Wei-dong, LIU Yan-ping, WU Bing-yu. Digital Economy, Factor Role Shift and Urban Carbon Emissions: Based on the test of moderating and threshold effect. journal6, 2024, 23(2): 137-151.
1 王锋, 吴丽华, 杨超. 中国经济发展中碳排放增长的驱动因素研究[J]. 经济研究, 2010, 45(2): 123-136. 2 EHRLICH P, HOLDREN J. Impact of Population Growth[J]. Science, 1971, 171(3977): 1212. 3 孙耀武, 胡智慧. 数字经济、产业升级与城市环境质量提升[J]. 统计与决策, 2021, 37(23): 91-95. 4 邓荣荣, 张翱祥. 中国城市数字经济发展对环境污染的影响及机理研究[J]. 南方经济, 2022,(2): 18-37. 5 解春艳, 丰景春, 张可. 互联网技术进步对区域环境质量的影响及空间效应[J]. 科技进步与对策, 2017, 34(12): 35-42. 6 HAMPTON S E, STRASSER C A, TEWKSBURY J J, et al. Big data and the future of ecology[J]. Frontiers in ecology and the environment, 2013, 11(3): 156-162. 7 THOMPSON P, WILIAMS R, THOMAS B. Are UK SMEs with active web sites more likely to achieve both innovation and growth?[J]. Journal of Small Business and Enterprise Development, 2013, 20(4): 934-965. 8 荆文君, 孙宝文. 数字经济促进经济高质量发展:一个理论分析框架[J]. 经济学家, 2019, (2): 66-73. 9 谢云飞. 数字经济对区域碳排放强度的影响效应及作用机制[J]. 当代经济管理, 2021, 44(2): 68-78. 10 葛立宇, 莫龙炯, 黄念兵. 数字经济发展、产业结构升级与城市碳排放[J]. 现代财经(天津财经大学学报), 2022, 42(10): 20-37. 11 佘群芝, 吴柳, 郑洁. 数字经济、经济聚集与碳排放[J]. 统计与决策, 2022, 38(21): 5-10. 12 徐维祥, 周建平, 刘程军. 数字经济发展对城市碳排放影响的空间效应[J]. 地理研究, 2022, 41(1): 111-129. 13 邓荣荣, 张翱祥. 中国城市数字金融发展对碳排放绩效的影响及机理[J]. 资源科学, 2021, 43(11): 2316-2330. 14 韩晶, 姜如玥, 孙雅雯. 数字服务贸易与碳排放——基于50个国家的实证研究[J]. 国际商务(对外经济贸易大学学报), 2021,(6): 34-49. 15 渠慎宁, 史丹, 杨丹辉. 中国数字经济碳排放:总量测算与趋势展望[J]. 中国人口·资源与环境, 2022, 32(9): 11-21. 16 LI X, LIU J, NI P. The Impact of the Digital Economy on CO2 Emissions: A Theoretical and Empirical Analysis[J]. Sustainability, 2021, 13(13): 7267. 17 缪陆军, 陈静, 范天正, 等. 数字经济发展对碳排放的影响——基于278个地级市的面板数据分析[J]. 南方金融, 2022, (2): 45-57. 18 王蕾, 朱彤. 数字经济是否增加能源消费?——基于ICT应用研究的分析[J]. 城市与环境研究, 2021, (3): 93-108. 19 彭水军, 张文城, 孙传旺. 中国生产侧和消费侧碳排放量测算及影响因素研究[J]. 经济研究, 2015, 50(1): 168-182. 20 李卫东, 余晶晶. 基于面板数据的中国城镇化对碳排放影响的实证分析[J]. 北京交通大学学报(社会科学版), 2017, 16(2): 50-56. 21 PRADHAN R P, ARVIN M B, NAIR M. Sustainable economic growth in the European Union: the role of ICT, venture capital,and innovation[J]. Review of Financial Economics, 2020, 38(1): 36-42. 22 蒋建勋, 唐宇晨, 李晓静. 双碳背景下数字金融赋能新能源企业绿色创新:基于融资约束视角[J]. 当代经济管理, 2021, 44(5): 81-89. 23 GE R E. A Breakdown of the Digital Wind Farm[EB/OL]. (2015-05-19)[2022-06-23]. https://www. ge. com/renewable energy/stories/meet-the-digitalwind-farm. 24 LI Y, YANG X, RAN Q, et al. Energy structure, digital economy, and carbon emissions: evidence from China[J]. Environmental Science and Pollution Research, 2021, 28(45): 64606-64629. 25 VAN HEDDEGHEM W, LAMBERT S, LANNOO B, et al. Trends in worldwide ICT electricity consumption from 2007 to 2012[J]. Computer Communications, 2014, 50: 64-76. 26 ACEMOGLU D, RESTREPO P. Robots and Jobs: Evidence from U.S. Labor Markets[J]. Journal of Political Economy, 2020, 128(6): 2188-2244. 27 王林辉, 胡晟明, 董直庆. 人工智能技术会诱致劳动收入不平等吗——模型推演与分类评估[J]. 中国工业经济, 2020,(4): 97-115. 28 李梦娜, 周云波. 数字经济发展的人力资本结构效应研究[J]. 经济与管理研究, 2022, 43(1): 23-38. 29 GOMBER P, KAUFFMAN R J, PARKER C. On the fintech revolution: Interpreting the forces of innovation, disruption, and transformation in financial services[J]. Journal of Management information Systems, 2018, 35(1): 220-265. 30 乔彬, 赵广庭, 沈烁华. 数字普惠金融能促进企业绿色创新吗?[J]. 南方金融, 2022,(3): 14-27. 31 GERLAGH R, VAN DER ZWAAN B. A sensitivity analysis of timing and costs of greenhouse gas emission reductions[J]. Climatic Change, 2004, 65(1-2): 39-71. 32 CHEN J, GAO M, MANGLA S K, et al. Effects of technological changes on China's carbon emissions[J]. Technological Forecasting and Social Change, 2020, 153. 33 WANG J, HUANG Z. The Recent Technological Development of Intelligent Mining in China[J]. Engineering, 2017, 3(4): 439-444. 34 张帆, 葛世荣, 李闯. 智慧矿山数字孪生技术研究综述[J]. 煤炭科学技术, 2020, 48(7): 168-176. 35 BROOKES L. The greenhouse effect: fallacies in the energy efficiency solution[J]. Energy Policy, 1990, 18(2): 199-201. 36 ZHU Q, PENG X. The impacts of population change on carbon emissions in China during 1978—2008[J]. Environmental Impact Assessment Review, 2012, 36: 1-8. 37 GANI A. Fossil fuel energy and environmental performance in an extended STIRPAT model[J]. Journal of Cleaner Production, 2021, 297. 38 陈占明, 吴施美, 马文博, 等. 中国地级以上城市二氧化碳排放的影响因素分析:基于扩展的STIRPAT模型[J]. 中国人口、资源与环境, 2018, 28(10): 45-54. 39 DAMANPOUR F, WALKER R M, AVELLANEDA C N. Combinative Effects of Innovation Types and Organizational Performance: A Longitudinal Study of Service Organizations[J]. Journal of Management Studies, 2009, 46(4): 650-675. 40 SHAN Y, GUAN D, LIU J, et al. Methodology and applications of city level CO2 emission accounts in China[J]. Journal of Cleaner Production, 2017, 161: 1215-1225. 41 BAI Y, DENG X, GIBSON J, et al. How does urbanization affect residential CO2 emissions? An analysis on urban agglomerations of China[J]. Journal of Cleaner Production, 2019, 209: 876-885. 42 CHEN J, GAO M, CHENG S, et al. County-level CO2 emissions and sequestration in China during 1997—2017[J]. Scientific Data, 2020, 7(1). 43 赵涛, 张智, 梁上坤. 数字经济、创业活跃度与高质量发展——来自中国城市的经验证据[J]. 管理世界, 2020, 36(10):65-76. 44 李国志, 李宗植. 人口、经济和技术对二氧化碳排放的影响分析——基于动态面板模型[J]. 人口研究, 2010, 34(3): 32-39. 45 余泳泽. 中国省际全要素生产率动态空间收敛性研究[J]. 世界经济, 2015, 38(10): 30-55. 46 KUMBHAKAR S C, LOVELL C A K. Stochastic Frontier Analysis[J]. Cambridge Books, 2003, 24(4). 47 SADORSKY P. The effect of urbanization on CO2 emissions in emerging economies[J]. Energy Economics, 2014, 41: 147-153. 48 ZHOU X, ZHANG J, LI J. Industrial structural transformation and carbon dioxide emissions in China[J]. Energy Policy, 2013, 57: 43-51. 49 ZHU H, DUAN L, GUO Y, et al. The effects of FDI, economic growth and energy consumption on carbon emissions in ASEAN-5: Evidence from panel quantile regression[J]. Economic Modelling, 2016, 58: 237-248. 50 HUANG C, ZHANG X, LIU K. Effects of human capital structural evolution on carbon emissions intensity in China: A dual perspective of spatial heterogeneity and nonlinear linkages[J]. Renewable and Sustainable Energy Reviews, 2021, 135. 51 邵帅, 张可, 豆建民. 经济集聚的节能减排效应:理论与中国经验[J]. 管理世界, 2019, 35(1): 36-60. 52 李治国, 车帅, 王杰. 数字经济发展与产业结构转型升级——基于中国275个城市的异质性检验[J]. 广东财经大学学报, 2021, 36(5): 27-40. 53 姚梅洁, 宋增基, 张宗益. 制度负外部性与市场主体的应对——来自中国民营企业的经验证据[J]. 管理世界, 2019, 35(11): 158-173.