促进制造业升级的人工智能治理:平台数据资产视角

谢康, 张呈昊

北京交通大学学报(社会科学版) ›› 2025, Vol. 24 ›› Issue (4) : 27-38.

PDF(866 KB)
欢迎访问《北京交通大学学报(社会科学版)》官方网站!今天是
PDF(866 KB)
北京交通大学学报(社会科学版) ›› 2025, Vol. 24 ›› Issue (4) : 27-38.
应用经济研究

促进制造业升级的人工智能治理:平台数据资产视角

  • 谢康, 张呈昊
作者信息 +

Artificial Intelligence Governance for Advancing Manufacturing Upgrading: A Platform Data Asset Perspective

  • XIE Kang, ZHANG Cheng-hao
Author information +
文章历史 +

摘要

针对产业升级与人工智能治理二者关系的研究缺口,本文从平台数据资产流动性与安全性平衡视角,基于多重委托代理模型探讨促进制造业升级的人工智能治理。研究发现:平台人工智能的能力在提升数据资产流动性的同时会降低其安全性,因而人工智能的能力对平台总效用不是越高越好,而是存在最优的人工智能能力区间;平台人工智能的最优能力区间主要受平台对风险的厌恶程度、平台对人工智能的信任程度两个内生变量,以及数据信噪比和市场稳定性两个外生变量的影响。据此,制造业智能化过程中,产业可从人工智能风险厌恶、信任程度、数据质量和市场稳定性四个方面构建促进产业升级的人工智能治理体系。

Abstract

Against the research gap in the relationship between industrial upgrading and artificial intelligence (AI) governance, this paper explores AI governance for boosting manufacturing upgrading from the perspective of balancing liquidity and security of platform-based data assets, drawing on the multi-tier principal-agent model. The study reveals the following key findings: Enhancing the capabilities of platform-based AI improves the liquidity of data assets but simultaneously compromises their security. Therefore, a higher AI capability does not translate to a greater total utility for the platform; instead, there exists an optimal range of AI capability. This optimal range is primarily influenced by two endogenous variables—platform risk aversion and trust in AI—and two exogenous variables—data signal-to-noise ratio (SNR) and market stability. Therefore, it is suggested that during the intelligentization of the manufacturing industry, the industry can develop an AI governance system conducive to upgrading by focusing on four dimensions: the industry’s degree of risk aversion and level of trust in AI, data quality, and market stability.

关键词

制造业升级 / 人工智能治理 / 平台数据资产 / AI最优能力

Key words

manufacturing upgrading / Artificial Intelligence governance / platform data assets / optimal AI capability

引用本文

导出引用
谢康, 张呈昊. 促进制造业升级的人工智能治理:平台数据资产视角[J]. 北京交通大学学报(社会科学版). 2025, 24(4): 27-38
XIE Kang, ZHANG Cheng-hao. Artificial Intelligence Governance for Advancing Manufacturing Upgrading: A Platform Data Asset Perspective[J]. Journal of Beijing Jiaotong University(Social Sciences Edition). 2025, 24(4): 27-38
中图分类号: F273   

参考文献

1 闫强明,张辉.建成现代化经济体系的挑战与发展对策[J].北京交通大学学报(社会科学版),2025,24(1):44-53.
2 张万里,刘婕.人工智能对产业结构升级的影响机制研究——基于资本-技能互补的理论分析[J].经济经纬,2023,40(2):99-110.
3 穆荣平,郭京京,李雨晨,等.人工智能赋能制造业创新驱动发展态势、问题和建议[J].中国科学院院刊,2025,40(8):1329-1339.
4 张树华,张夏添.生成式人工智能治理国际研究评述:焦点议题与立场分野[J].社会科学研究,2025,(3):25-36+227.
5 谢康,肖静华,刘帆.数字经济创新极点:平台创新、竞争与就业[M].北京:经济管理出版社,2024.
6 SCHWIENBACHER A. Entrepreneurial risk-taking in crowd-funding campaigns[J]. Small Business Economics, 2018,51:843-859.
7 戴琼海.大模型技术:变革、挑战与机遇[J].中国科学基金,2023,37(5):713.
8 SHI S, GONG Y, GURSOY D. Antecedents of trust and adoption intention toward artificially intelligent recommendation systems in travel planning: A heuristicsystematic model[J]. Journal of Travel Research,2021,60(8):1714-1734.
9 BIGMAN Y E, WILSON D, ARNESTAD M N, et al. Algorithmic Discrimination Causes Less Moral Outrage than Human Discrimination. [J]. Journal of Experimental Psychology: General, 2023, 152(1): 4-27.
10 JOHNSON D H. Signal-to-noise ratio[J]. Scholarpedia, 2006, 1(12): 2088.
11 BOX G. Signal-To-Noise Ratios, Performance Criteria, and Transformations[J]. Technometrics, 1988, 30(1): 1-17.
12 THANGJAI W, NIWITPONG S A. Confidence intervals for functions of signal-to-noise ratio with application to economics and finance[J]. Asian Journal of Economics and Banking, 2024, 8(2): 199-218.
13 李振新,陈享光.资本驱动下数字平台扩张与金融化[J].北京师范大学学报(社会科学版),2023,(4):18-28.
14 COLLINS V, LANZ J. Managing data as an asset[J]. The CPA Journal, 2019, 89(6): 22-27.
15 XU G, CHIANG J M H. The Core Value of Web3. 0: Recognition and Measurement of Data Assets[J]. Journal of Information Technology & Economic Development, 2023, 13(2).

PDF(866 KB)

Accesses

Citation

Detail

段落导航
相关文章

/