|
|
Three-dimensional Analysis of Health Disinformation in the Internet of Healthcare System: Connotation and Causes, Characteristics and Classification, Identification and Governance |
ZHU Hong-miao1, MO Yu-tong1, QI Jia-yin2,3 |
1.School of Management, Shanghai University of International Business and Economics, Shanghai 201620, China 2.School of Cyberspace Security, Guangzhou University, Guangzhou Guangdong 510006, China 3.Key Laboratory of Trustworthy Distributed Computing and Service, Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract Health disinformation refers to the disinformation related to medical health, which is partially deviated from the original accurate meaning (or objective reality) due to the influence of factors such as the intention of the information producer, interference from external noise, characteristics of the media and individual differences of the information receiver in the communication process. The generation of such disinformation is closely related to such factors as the quick spread of academic controversy on a certain health topic, the information producers’ lack of professional knowledge, the public’s panic or anxiety, the deliberate use by some businesses for profit and the misuse of AI intelligent writing tools. Since health disinformation is misleading, widely spread, difficult to identify, has long time-effectiveness and great harm, an effective control and management is in urgent need. While strengthening the identification through technical means, it is necessary to establish a health information governance mechanism in the internet of healthcare system and work together to create a clean health information environment; make full use of online and offline multi-channel resources to carry out medical and health knowledge popularization activities and improve the public’s ability to screen various health information; establish relevant incentive system to enhance the enthusiasm and responsibility consciousness of medical staff in information screening; release true and scientific health information in time, to increase the frequency of true health information and guide the public correctly. At the same time, we should face up to the new challenges to the dissemination of health disinformation brought by the continuous development of information technology, and adjust governance strategies timely.
|
Received: 20 May 2023
|
|
|
|
|
1 杨善林, 丁帅, 顾东晓, 等. 医联网:新时代医疗健康模式变革与创新发展[J]. 管理科学学报, 2021, 24(10): 1-11. 2 杨善林, 范先群, 丁帅, 等. 医联网与智慧医疗健康管理[J]. 管理学, 2021, 34(6): 71-75. 3 常松, 王慧. 我国健康传播学的研究和发展趋势[J]. 当代传播, 2021, 37(2): 48-50. 4 CHEN S, XIAO L, KUMAR A. Spread of misinformation on social media: What contributes to it and how to combat it[J]. Computers in Human Behavior, 2023, 141(4). 5 郭强, 刘新惠, 胡兆龙. 真实信息发布在谣言传播中的作用研究[J]. 计算机应用研究, 2014, 31(4): 1031-1034+1050. 6 钟文俊, 孙文. 新媒体的健康信息传播及其社会责任[J]. 视听, 2016, 11(2): 122-123. 7 ROBBINS S P,COULTER M. Management[M]. Beijing: Tsinghua University Press, 2013: 379. 8 彭知辉. 论中国语境下 Disinformation 概念的对接、转换与重新阐释[J]. 情报理论与实践, 2022, 45(1): 1-10. 9 ZUBIAGA A, LIAKATA M, PROCTER R, et al. Analysing how people orient to and spread rumours in social media by looking at conversational threads[J]. PLoS ONE, 2016, 11(3). 10 ZHANG Z L, ZHANG Z Q, LI H. Predictors of the authenticity of Internet health rumours[J]. Health Information and Libraries Journal, 2015, 32(3): 195-205. 11 宋士杰, 赵宇翔, 朱庆华. 社交媒体中失真健康信息的传播、识别与纠偏研究[J]. 情报杂志, 2023, 42(6): 162-169. 12 邓胜利, 顾一飞. 网络虚假健康信息研究综述:认知、行为与治理[J]. 图书馆杂志, 2022, 41(5): 14-22. 13 赵云泽, 项甜甜. 社交媒体中健康争议性话题传播研究[J]. 新闻春秋, 2022, 11(5): 30-37. 14 尚志海, 盘炜, 叶丹丹. 新冠肺炎疫情风险信息失真及传播研究[J]. 武汉理工大学学报(信息与管理工程版), 2022, 44(2): 200-205. 15 詹骞, 赵冰洁. 健康类虚假信息的人工神经网络识别与治理[J]. 现代传播(中国传媒大学学报), 2022, 44(8): 155-161. 16 KRIS-ETHERTON P M, KRAUSS R M. Public health guidelines should recommend reducing saturated fat consumption as much as possible: YES[J]. The American Journal of Clinical Nutrition, 2020, 112(1):13-18. 17 KRAUSS R M, KRIS-ETHERTON P M. Public health guidelines should recommend reducing saturated fat consumption as much as possible: Debate Consensus[J]. The American Journal of Clinical Nutrition, 2020, 112(1):25-26. 18 一天喝够8杯水健康才达标? 因人而异[EB/OL]. (2021-12-16) [2023-04-26].人民网http://health.people.com.cn/n1/2021/1216/c14739-32309557.html. 19 李月琳, 张秀. 疫情虚假信息的甄别及传播原因探析[EB/OL]. (2020-02-26) [2023-04-26]. https://bs.nankai.edu.cn/ 2020/0226/c9014a266289/page.htm. 20 人民网. 疫情心理健康报告2.0:愤怒其实不是一件坏事[EB/OL]. (2020-03-13) [2023-04-26]. http://www.people.com.cn/n1/2020/0313/c431870-31631180.html. 21 新华网. 买爆款防疫神器小心安全隐患[EB/OL]. (2022-12-25) [2023-04-26]. http://www.news.cn/fortune/2022-12/25/c_1129230796.htm. 22 张志勇, 荆军昌, 李斐等. 人工智能视角下的在线社交网络虚假信息检测、传播与控制研究综述[J]. 计算机学报, 2021, 44(11): 2261-2282. 23 周思. 智能新闻写作前景初探——论AI量化时代对新闻冗余的筛选与整合[J]. 出版广角, 2019, 25(19): 75-77. 24 张筱荣, 郭圳凝. 突发公共卫生事件网络舆情危机及其治理[J]. 北京交通大学学报(社会科学版), 2023, 22(2): 133-140. 25 WESTERMAN D, SPENCE P R, BRANDON V. Social media as information source: Recency of updates and credibility of information[J]. Journal of Computer-Mediated Communication, 2014, 19(2): 171-183. 26 VOSOUGHI S, ROY D, ARAL S. The spread of true and false news online[J]. Science, 2018, 359: 1146-1151. 27 毕子悠. 从“第三人效果”看社交媒体虚假健康信息传播原因及对策[J]. 传播力研究, 2019, 3(12): 220. 28 朱庆华, 杨梦晴, 赵宇翔, 等. 健康信息行为研究:溯源、范畴与展望[J]. 中国图书馆学报, 2022, 48(2): 94-107. 29 王战平. 基于Agent的网络传播危机信息识别与评价研究[J]. 图书情报工作, 2006, 27(12): 51-53+125. 30 OTT M, CHOI Y, CARDIE C, et al. Finding deceptive opinion spam by any stretch of the imagination[C] // Proceedings of the 49th annual meeting of the NAACL-HLT. Portland: Association for computational linguistics, 2011: 309-319. 31 李月琳, 张秀, 王姗姗. 社交媒体健康信息质量研究: 基于真伪健康信息特征的分析[J]. 情报学报, 2018, 37(3): 294-304. 32 张帅. 社交媒体虚假健康信息特征识别[J]. 图书情报工作, 2021, 65(9): 70-78. 33 赵月华, 朱思成, 苏新宁. 面向网络虚假医疗信息的识别模型构建研究——一种基于预训练的BERT模型[J]. 情报科学, 2021, 39(12): 165-173. 34 李旭嵘, 纪守领, 吴春明, 等. 深度伪造与检测技术综述[J]. 软件学报, 2021, 32(2): 496-518. 35 LAZARSFELD P F, BERELSON B, GAUDET H. The people’s choice[M]. New York: Columbia University Press, 1948. 36 李佳. 数媒时代意见领袖的变迁、边界与进路[J]. 青年记者, 2021, 81(7): 58-59. 37 ADDAWOOD A, BALAKUMAR P, DIESNER J. Categorization and comparison of influential twitter users and sources referenced in tweets for two health-related topics[C]//Information in Contemporary Society, Washington DC, 2019: 639-646. 38 魏曦英. 公众健康信息失真的机理及对策[J]. 漳州师范学院学报(哲学社会科学版), 2006, 24(4): 87-90. 39 徐剑, 钱烨夫. “信息疫情”的定义、传播及治理[J]. 上海交通大学学报(哲学社会科学版), 2020, 28(5): 121-134. 40 NAN X, WANG Y, THIER K. Why do people believe health misinformation and who is at risk? A systematic review of individual differences in susceptibility to health misinformation[J]. Social Science & Medicine, 2022, 314(12). 41 CHRISTIAN U, FELIX S. Mere Repetition increases belief in factually true COVID-19-related information[J]. Journal of Applied Research in Memory And Cognition , 2021, 10(2): 241-247. 42 张菊平, 郭昊明, 荆文君, 等. 基于真实信息传播者的谣言传播模型的动力学分析[J]. 物理学报, 2019, 68(15): 193-204. 43 王竞, 程雅倩, 周照, 等. 新型冠状病毒肺炎疫情对武汉市一线医护人员心理状况的影响[J]. 武汉大学学报(医学版), 2020, 41(4): 547-550. 44 陈莉, 陈松, 梅俊华, 等. 新冠肺炎疫情下医护人员共情疲劳干预策略研究[J]. 医学与哲学, 2020, 41(16): 50-53. 45 朱宏淼, 齐佳音, 靳祯, 等. 医联网环境下失真健康信息传播动力学模型与干预策略研究[J]. 系统工程理论与实践, 2022, 42(7): 1927-1940. 46 李向玥, 林迪飞, 关惠卿. 突发公共卫生事件背景下公立医院医护人员职业倦怠研究[J]. 中国卫生标准管理, 2023, 14(3): 30-35. 47 刘玲艳, 戴新梅, 邓燕君. 医护人员职业倦怠在工作负荷与工作绩效之间的中介作用[J]. 职业与健康, 2022, 38(2): 268-270+275. |
|
|
|