Abstract:The impact of artificial intelligence (AI) on the value chain of firms such as product development, operation, and marketing is changing the mechanism and path of the transformation and upgrading of manufacturing industry. Centering around how AI can promote transformation and upgrading of manufacturing industry through its influence on product innovation, and based on the existing literature, this paper extracts core innovative features of AI that differs from other digital technology, analyzes its influence mechanism, and through cross-level analysis framework of AI’s influence on individual, enterprises, and industry, puts forward a conceptual model of adaptive change about AI’s influence on transformation and upgrading of manufacturing industry from the perspective of product innovation, discusses mechanism and path of AI’s influence on adaptive transformation of manufacturing through product innovation, and draws the following conclusions: (1) the new social subject, generativity, and mutability of knowledge accumulation constitute AI’s three core innovation features, which distinguish it from other digital technologies; (2) AI engages in product planning, structural engineering, and other development processes, which changes or enhances the product development mindset of human intelligence and expands the knowledge boundaries of product development; (3) AI strengthens the real-time interaction and adjustment of the whole value chain including product innovation and operation, marketing and retailing, which builds an adaptive mechanism that balances the conflict between manufacturing-oriented agility and user-oriented agility, leading to the emergence of adaptive intermittent transformational path through the rapid adaptive adjustment in the manufacturing industry.
1 马克·珀迪,邱静,陈笑冰. 埃森哲:人工智能助力中国经济增长[J]. 机器人产业,2017,(4):80-91. 2 KROMANN L,MALCHOW-M?LLER N,SKAKSEN J R,et al. Automation and productivity—a cross-country,cross-industry comparison[J]. Industrial and Corporate Change,2020,29(2):265-287. 3 LI K, KIM D J, LANG K R, et al. How should we understand the digital economy in Asia? Critical assessment and research agenda[J]. Electronic Commerce Research and Applications, 2020, 44: 1-16. 4 AUTOR D H. Why are there still so many jobs?The history and future of workplace automation[J]. Journal of Economic Perspectives,2015,29(3):3-30. 5 李廉水,鲍怡发,刘军. 智能化对中国制造业全要素生产率的影响研究[J]. 科学学研究, 2020,38(4):609-618. 6 吕越,谷玮,包群. 人工智能与中国企业参与全球价值链分工[J]. 中国工业经济,2020,(5):80-98. 7 刘斌,潘彤. 人工智能对制造业价值链分工的影响效应研究[J]. 数量经济技术经济研究,2020,37(10):24-44. 8 RAMMER C, FERNáNDEZ G P, CZARNITZKI D. Artificial intelligence and industrial innovation: Evidence from German firm-level data[J]. Research Policy, 2022, 51(7). 9 吴小龙,肖静华,吴记. 当创意遇到智能:人与AI协同的产品创新案例研究[J]. 管理世界,2023,39(5):112-126+144+127. 10 VERGANTI R, VENDRAMINELLI L, IANSITI M. Innovation and design in the age of artificial intelligence[J]. Journal of Product Innovation Management, 2020, 37(3): 212-227. 11 GEREFFI G. International trade and industrial upgrading in the apparel commodity chain[J]. Journal of International Economics,1999,48(1):37-70. 12 HUMPHREY J,SCHMITZ H. Chain governance and upgrading:taking stock[M]. Local Enterprises in the Global Economy:Issues of Governance and Upgrading, 2004: 349. 13 肖静华. 企业跨体系数字化转型与管理适应性变革[J]. 改革, 2020, (4): 37-49. 14 OSTROM E. A general framework for analyzing sustainability of social-ecological systems[J]. Science, 2009, 325(5939): 419-422. 15 WILLIAMS B K. Adaptive management of natural resources—framework and issues[J]. Journal of environmental management, 2011, 92(5): 1346-1353. 16 WALTERS C J, HOLLING C S. Large-scale management experiments and learning by doing[J]. Ecology, 1990, 71(6): 2060-2068. 17 刘意,谢康,邓弘林.数据驱动的产品研发转型:组织惯例适应性变革视角的案例研究[J].管理世界,2020,36(3):164-183. 18 黄晓凤,朱潇玉,王金红. 人工智能提升了中国制造业企业的全要素生产率吗[J]. 财经科学,2023,(1):138-148. 19 郑琼洁,王高凤. 人工智能驱动制造业价值链攀升:何以可能,何以可为[J]. 江海学刊,2021,(4):132-138. 20 RAMIREZ-ASIS E, VILCHEZ-CARCAMO J, THAKAR C M, et al. A review on role of artificial intelligence in food processing and manufacturing industry[J]. Materials Today: Proceedings, 2022, 51: 2462-2465. 21 SHAO S, SHI Z, SHI Y. Impact of AI on employment in manufacturing industry[J]. International Journal of Financial Engineering, 2022, 9(3): 2141013. 22 肖静华,谢康,吴瑶.数据驱动的产品适应性创新——数字经济的创新逻辑(一)[J].北京交通大学学报(社会科学版), 2020, 19(1):12. 23 吴小龙,肖静华,吴记. 人与AI协同的新型组织学习:基于场景视角的多案例研究[J]. 中国工业经济,2022,(2):175-192. 24 LU C H. The impact of artificial intelligence on economic growth and welfare[J]. Journal of Macroeconomics,2021,69. 25 张任之. 新一代信息技术驱动制造业价值链重构研究——基于模块化理论视角[J].学习与探索,2022,(10):121-128. 26 VENTURINI F. Intelligent technologies and productivity spillovers:Evidence from the Fourth Industrial Revolution[J]. Journal of Economic Behavior & Organization,2022,194:220-243. 27 刘青,肖柏高. 劳动力成本与劳动节约型技术创新——来自AI语言模型和专利文本的证据[J]. 经济研究,2023,58(2):74-90. 28 王磊,肖倩,邓芳芳. 人工智能对中国制造业创新的影响研究——来自工业机器人应用的证据[J]. 财经论丛,2023,(9):14-24. 29 许清清,董培超,路兰. 智能制造驱动劳动密集型产业转型实证研究[J]. 福建论坛(人文社会科学版),2020,(7):25-38. 30 胡俊,杜传忠. 人工智能推动产业转型升级的机制、路径及对策[J]. 经济纵横,2020,(3):94-101. 31 肖静华,毛蕴诗,谢康. 基于互联网及大数据的智能制造体系与中国制造企业转型升级[J]. 产业经济评论,2016,(2):5-16. 32 肖静华,吴小龙,谢康,等. 信息技术驱动中国制造转型升级——美的智能制造跨越式战略变革纵向案例研究[J]. 管理世界,2021,37(3):161-179+225+11. 33 肖静华,胡杨颂,吴瑶. 成长品:数据驱动的企业与用户互动创新案例研究[J]. 管理世界,2020,36(3):183-205. 34 陈剑,刘运辉. 数智化使能运营管理变革:从供应链到供应链生态系统[J]. 管理世界,2021,37(11):227-240+14. 35 吴继飞,于洪彦,朱翊敏,等. 人工智能推荐对消费者采纳意愿的影响[J]. 管理科学,2020,33(5):29-43. 36 朱国玮,高文丽,刘佳惠,等. 人工智能营销:研究述评与展望[J]. 外国经济与管理,2021,43(7):86-96. 37 林子筠,吴琼琳,才凤艳. 营销领域人工智能研究综述[J]. 外国经济与管理,2021,43(3):89-106. 38 张雁冰,吕巍,张佳宇. AI营销研究的挑战和展望[J]. 管理科学,2019,32(5):75-86. 39 LOUREIRO S M C,GUERREIRO J,TUSSYADIAH I. Artificial intelligence in business:State of the art and future research agenda[J]. Journal of Business Research,2021,129:911-926. 40 LIU J,CHANG H,FORREST J Y L,et al. Influence of artificial intelligence on technological innovation: Evidence from the panel data of China's manufacturing sectors[J]. Technological Forecasting and Social Change,2020,158. 41 PREM E. Artificial intelligence for innovation in Austria[J]. Technology Innovation Management Review,2019,9(12):5-15. 42 LEONARDI P M. When flexible routines meet flexible technologies:Affordance,constraint,and the imbrication of human and material agencies[J]. MIS Quarterly,2011:147-167. 43 LINDEBAUM D,VESA M,DEN HOND F. Insights from “the machine stops” to better understand rational assumptions in algorithmic decision making and its implications for organizations[J]. Academy of Management Review,2020,45(1):247-263. 44 TRAJTENBERG M. AI as the next GPT:a Political-Economy Perspective[J]. National Bureau of Economic Research,2018:175-186. 45 徐鹏,徐向艺.人工智能时代企业管理变革的逻辑与分析框架[J]. 管理世界,2020,36(1):122-129+238. 46 TATNALL A. Actor-network theory in information systems research[M]// Encyclopedia of Information Science and Technology,First Edition. Hershey: IGI Global,2005:42-46. 47 董春雨. 从机器认识的不透明性看人工智能的本质及其限度[J]. 中国社会科学,2023,(5):148-166+207-208. 48 齐佳音,王琳琳,袁雨飞. 人工智能产品的适应性创新逻辑——哈贝马斯交往理论视角[J]. 北京交通大学学报(社会科学版),2021,20(1):31-45. 49 吉本斯. 知识生产的新模式:当代社会科学与研究的动力学[M]. 北京:北京大学出版社,2011. 50 刘日明,刘小涛. 智能知识生产模式的本质特征和社会驱动[J]. 社会科学,2022,(8):21-28. 51 肖红军.算法责任:理论证成、全景画像与治理范式[J]. 管理世界,2022,38(4):200-226. 52 STAHL B C. Artificial intelligence for a better future:an ecosystem perspective on the ethics of AI and emerging digital technologies[M]. Cham: Springer Nature,2021. 53 CSIS. Artificial intelligence and national security:the importance of the AI ecosystem [EB/OL].(2018-11-05)[2019-05-10]. http://k1.caict.ac.cn/yjts/qqzkgz/zksl/201811/ P020181107706108106275. 54 邓美薇. 日本人工智能的战略演进和发展愿景及其启示[J]. 日本问题研究, 2022,36(2): 11. 55 宁振波. 智能制造的本质[M]. 北京:机械工业出版社,2021. 56 CALVANO E,CALZOLARI G,DENICOLO V,et al. Artificial intelligence, algorithmic pricing, and collusion[J]. American Economic Review,2020,110(10):3267-3297. 57 LIU J,QIAN Y,YANG Y,et al. Can artificial intelligence improve the energy efficiency of manufacturing companies? Evidence from China[J]. International Journal of Environmental Research and Public Health, 2022, 19(4): 2091. 58 TONG S,JIA N,LUO X,et al. The Janus face of artificial intelligence feedback:Deployment versus disclosure effects on employee performance[J]. Strategic Management Journal,2021,42(9):1600-1631. 59 郭凯明. 人工智能发展、产业结构转型升级与劳动收入份额变动[J]. 管理世界,2019,35(7):60-77+202-203. 60 FREY C B,OSBORNE M A. The future of employment:How susceptible are jobs to computerisation?[J]. Technological Forecasting and Social Change,2017,114:254-280. 61 王军,常红. 人工智能对劳动力市场影响研究进展[J]. 经济学动态,2021,(8):146-160. 62 YIN H, LIU L, ZHONG Y. Research on a distributed artificial intelligence and multi-agent system[J]. Agro Food Industry Hi-Tech,2017,28(1):2122-2126. 63 VASHISHT M,KUMAR B. Effective implementation of machine learning algorithms using 3D colour texture feature for traffic sign detection for smart cities[J]. Expert Systems,2022,39(5):12781. 64 XU Q A, CHANG V, GOKARANENI N,et al. Artificial Intelligence Ethics and Applications[C]. 2022 International Conference on Industrial IoT,Big Data and Supply Chain(IIoTBDSC). IEEE,2022:322-328. 65 肖静华. 从工业化体系向互联网体系的跨体系转型升级模式创新[J]. 产业经济评论,2017,(2):55-66. 66 于锦华,霍春辉. 国外组织敏捷性理论研究综述[J]. 经济管理,2009,31(5):170-174. 67 LU Y,RAMAMURTHY K. Understanding the link between information technology capability and organizational agility:An empirical examination[J]. MIS Quarterly,2011:931-954. 68 SAMBAMURTHY V,BHARADWAJ A,GROVER V. Shaping agility through digital options: Reconceptualizing the role of information technology in contemporary firms[J]. MIS Quarterly,2003:237-263. 69 FURR N, SHIPILOV A. Digital doesn’t have to be disruptive[J]. Harvard Business Review, 2019, 94(4):94-103. 70 SJ?DIN D, PARIDA V, PALMIé M, et al. How AI capabilities enable business model innovation: Scaling AI through co-evolutionary processes and feedback loops[J]. Journal of Business Research, 2021, 134: 574-587.