Abstract:With the transportation sector a significant source of carbon emissions, its emission reduction effectiveness plays a critical role in achieving the “dual carbon” goals. This study adopts the shadow price method to estimate the carbon emission reduction costs of the transportation sector across 30 provinces in China from 2010 to 2020. On this basis, the carbon emission reduction potential of each province is evaluated from the perspectives of equity and efficiency, and the Spatial Durbin Model is used to analyze the factors influencing carbon emission reduction potential. The research findings are as follows:(1) From 2010 to 2020, the carbon emission reduction costs of China’s transportation sector exhibited an upward trend with fluctuations, characterized by higher costs in the western regions compared to the eastern regions. (2) Significant disparities exist in carbon emission reduction potential among provinces, with the eastern regions generally showing higher potential than the western regions. (3) The main factors influencing the carbon emission reduction potential include scientific and technological investment, transportation structure, economic development level, industrial structure and informatization level. Among them, the increase in scientific and technological expenditure is the key factor in reducing carbon emissions in the transportation industry. To effectively promote carbon reduction in the transportation sector, efforts should focus on reducing emission reduction costs, fully leveraging emission reduction potential, and deeply promoting regional collaborative emission reduction.
1 XUAN D, MA X, SHANG Y. Can China’s policy of carbon emission trading promote carbon emission reduction?[J]. Journal of cleaner production, 2020, 270. 2 MENG C, DU X, ZHU M, et al. The static and dynamic carbon emission efficiency of transport industry in China[J]. Energy, 2023, 274. 3 AVOTRA A A R N, NAWAZ A. Asymmetric impact of transportation on carbon emissions influencing SDGs of climate change[J]. Chemosphere, 2023, 324. 4 杨滨键,孙红雨.种植业碳减排成本测度与区域责任机制构建——以山东省为例[J].生态经济,2021,37(9):102-107. 5 吴力波,钱浩祺,汤维祺.基于动态边际减排成本模拟的碳排放权交易与碳税选择机制[J].经济研究,2014,49(9):48-61+148. 6 陈醒,徐晋涛.化工企业污染物影子价格的估计——基于参数化的方向性距离函数[J].北京大学学报(自然科学版),2021,57(2):341-350. 7 钱昭英,田磊.考虑减排潜力的中国省域碳排放权分配研究——基于改进的ZSG-DEA模型[J].工业技术经济,2024,43(7):91-100. 8 吴贤荣,张俊飚,田云,等.基于公平与效率双重视角的中国农业碳减排潜力分析[J].自然资源学报,2015,30(7):1172-1182. 9 周敏,吕宏宇.中国耕地利用碳减排潜力空间特征及影响因素[J].环境科学与技术,2024,47(1):214-225. 10 刘妍慧,栗洋.湖北省交通运输业碳排放测算及影响因素分解[J].统计与决策,2022,38(15):88-92. 11 闫树熙,陈璐.交通碳排放影响因素分析:以西安市为例[J].统计与决策,2020,36(4):62-66. 12 WEI C, NI J, DU L. Regional allocation of carbon dioxide abatement in China[J]. China Economic Review, 2012, 23(3): 552-565. 13 周从越,王竹,裘知,等.双碳目标下县域空间的减碳潜力与策略路径——基于浙江省碳排放权的解析与分配[J].浙江大学学报(理学版),2023,50(1):121-130. 14 周迪,吴泽文.中国工业碳减排潜力与路径研究[J].中国环境科学,2019,39(3):1306-1314. 15 雷明,万芷伊,姜梦琪,等.公平和效率视域下中国工业碳排放成本和碳减排潜力分析(2010-2020)[C]//中国环境科学学会.中国环境科学学会2023年科学技术年会论文集(一).北京大学乡村振兴研究院;北京大学光华管理学院,2023:16.