Abstract:Industrial big data is a key production factor that supports the digital transformation of industries and promote the integration of digital and real economy. Compared with other types of data, industrial data is featured with stronger exclusivity, greater value, higher systematism and increased risk exposure, which, while enhancing its factor potential, have more constraints on its value creation mechanism. Data analysis of production equipment, industrial product, and industrial chain can effectively optimize asset performance, promote product development, and improve industrial chain coordination so as to enhance the potential for data value creation. However, the unique attributes of industrial data also pose challenges to value creation, such as unwillingness of enterprises to supply data, increased difficulty in technology for data collection and analysis, and undefined data application scenarios. At present, the ‘data space’ mode represented by EU’s IDS and Japan’s CIOF is a more feasible industrial data development mode, which can better meet the needs of data subjects for trusted security environment, technical standard support and application scenario optimization. To fully unleash the potential of China’s industrial big data, we can learn from the experience of relevant modes in Europe and Japan, focus on improving the strategic planning and management system of industrial big data, innovate the mode of circulation and service for industrial data, strengthen the data management and application capability of industrial enterprises, so as to accelerate the construction of industrial big data system and industrial ecosystem.
陈楠, 蔡跃洲. 工业大数据的属性特征、价值创造及开发模式[J]. 北京交通大学学报(社会科学版), 2023, 22(3): 25-36.
CHEN Nan, CAI Yue-zhou. Characteristics, Value Creation and Development Mode of Industrial Big Data. journal6, 2023, 22(3): 25-36.
1 WDOWIN J, DIEPEVEEN S. The Value of Data[R]. Cambridge Publication from the Bennett Institute for Public Policy, 2020. 2 ICHIHASHI S. Non-competing Data Intermediaries[C]. Bank of Canada Working Paper, 2020. 3 李三希,武玙璠,鲍仁杰. 大数据、个人信息保护和价格歧视——基于垂直差异化双寡头模型的分析[J]. 经济研究, 2021, 56(1): 43-57. 4 陈舟,郑强,吴智崧. 我国数据交易平台建设的现实困境与破解之道[J]. 改革,2022,(2):76-87. 5 高磊,赵章界,林野丽,等. 基于《数据安全法》的数据分类分级方法研究[J]. 信息安全研究,2021,7(10):933-940. 6 张雪莹,杨帅锋,王冲华,等. 工业互联网数据安全分类分级防护框架研究[J]. 信息技术与网络安全,2021,40(1):2-9. 7 JI C, SHAO Q, SUN J, et al. Device Data Ingestion for Industrial Big Data Platform with a Case Study[J]. Sensor. 2016, 16, 279. 8 戎珂,陆志鹏. 数据要素论[M]. 北京:人民出版社,2022. 9 徐翔,厉克奥博,田晓轩. 数据生产要素研究进展[J]. 经济学动态,2021,722(4):142-158. 10 熊巧琴,汤珂. 数据要素的界权、交易和定价研究进展[J]. 经济学动态,2021,720(2):143-158. 11 蔡跃洲,马文君. 数据要素对高质量发展影响与数据流动制约[J]. 数量经济技术经济研究,2021,38(3):64-83. 12 CARRIERE-SWALLOW Y, HAKSKAR V. The Economics and Implications of Data: An Integrated Perspective[C]. IMF Working Paper, 2019. 13 保罗·萨缪尔森,威廉·诺德豪斯. 经济学(第19版)[M]. 北京:商务印书馆,2022. 14 ACQUISITI A, TAYLOR C, WAGMAN L The Economics of Privacy[J]. Journal of Economic Literature, 2016, 54(2): 442-492. 15 蔡跃洲,刘悦欣. 数据流动交易模式分类与规模估算初探[J]. China Economist, 2022, 17(6): 78-112. 16 GAESSLER F, WAGNER S. Patents, Data Exclusivity, and the Development of New Drugs[J]. The Review of Economics and Statistics, 2022, 104 (3): 571-586. 17 LI W C Y, NIREI M, YAMANA K. Vale of Data: There's No Such Thing as a Free Lunch in the Digital Economy[C]. RIETI Discussion Paper Series 19-E-022, 2019. 18 许宪春,王洋. 大数据在企业生产经营中的应用[J]. 改革,2021,(1): 18-35. 19 World Economic Forum. The Next Generation of Data-Sharing in Financial Services: Using Privacy Enhancing Techniques to Unlock New Value [R/OL]. (2019-09-12) [2023-02-20]. https://www3.weforum.org/docs/WEF_Next_Gen_Data_Sharing_Financial_Services.pdf. 20 余晓辉. 抓住机遇、直面问题,全力激发工业数据要素价值[N]. 人民邮电报,2020-05-24(6). 21 工业互联网产业联盟. 中国工业大数据技术与应用白皮书[R/OL]. (2017-07-30) [2022-10-15]. http://aii-alliance.org/upload/202003/0302_143243_743.pdf. 22 王建民. 工业大数据技术综述[J]. 大数据,2017,3(6): 12. 23 中国电子技术标准化研究院. 工业大数据白皮书 [R/OL]. (2019-03-30) [2022-10-15]. http://www.cesi.cn/images/editor/20190401/20190401145953698.pdf. 24 BERGEMANN D, BONATTI A, GAN T. The Economics of Social Data[C]. Cowles Foundation Discussion Papers, 2020. 25 CONG L W, XIE D X, ZHANG L. Knowledge Accumulation, Privacy, and Growth in a Data Economy[J]. Management Science, 2021, 67(10):6480-6492. 26 ATHEY S, CATALINI C, TUCKER C. The Digital Privacy Paradox: Small Money, Small Costs, Small Talk[C]. NBER Working Paper No. 23488, 2017. 27 ACQUISTI A, BRANDIMARTE L, LOEWENSTEIN G. Secrets and Likes: The Drive for Privacy and the Difficulty of Achieving It in the Digital Age[J]. Journal of Consumer Psychology, 2020, 30(4):736-758. 28 陶飞,刘蔚然,刘检华,等. 数字孪生及其应用探索[J]. 计算机集成制造系统,2018,24(1): 1-18. 29 World Economic Forum. Share to Gain: Unlocking Data Value in Manufacturing[R/OL]. (2020-01-31) [2023-02-22]. https://www3.weforum.org/docs/WEF_Share_to_Gain_Report.pdf. 30 徐梦迪,郭静雯. 基于海尔集团背景下供应链管理研究[J]. 中国储运,2023,(3): 187-188. 31 陈楠,蔡跃洲,马晔风. 制造业数字化转型动机、模式与成效——基于典型案例和问卷调查的实证分析[J]. 改革,2022,(11): 37-53.