|
|
Application and Risk Mitigation of Generative Artificial Intelligence in Policy Dissemination |
SHI Hui-ling, ZHANG Zhuo-ya |
School of Marxism, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract As a leading technology in the digital intelligence era, generative artificial intelligence finds its application in policy dissemination, which is prominently demonstrated in aspects such as the intelligent upgrade of each element within the policy dissemination structure and the continuous optimization of the overall dissemination structure. Specifically, it transforms the subject form of policy dissemination, driving their development towards the direction of human-machine interaction, human-machine co-construction, and human-machine symbiosis. It also alters the generation mode of policy dissemination content, improves the matching efficiency between the supply and demand of policy dissemination information, promotes the development and intelligence of integrated media, and comprehensively improves and optimizes the policy dissemination structure, thereby promoting the healthy development of policy dissemination. However, the application of generative artificial intelligence in policy dissemination is extremely complex and will also face non-negligible risks, such as the weakening of the “gatekeeper” status of policy dissemination subjects, the reinforcement of “information cocoon” of policies, the out-of-control spread of “policy public opinion”, and the continuous emergence of “policy rumors”. To avoid these risks, it is imperative to heighten the in-depth and comprehensive understanding of the entire populace regarding digital technologies represented by generative artificial intelligence and the social transformations they instigate; strengthen the construction of scientific and technological ethics and morality in the whole society, and focus on improving the technological ethics literacy of policy dissemination subjects and audiences; attach importance to the unity of the instrumental value and humanistic value of policy dissemination; and regulate the governance of generative artificial intelligence technology in accordance with the law.
|
Received: 23 July 2024
|
|
|
|
|
1 习近平向国际人工智能与教育大会的贺信[N].人民日报,2019-05-17(1). 2 中国互联网络信息中心.生成式人工智能应用发展报告[EB/OL].(2024-12-02)[2024-12-23]. https://www.cnnic.net.cn/n4/2024/1216/c88-11196.html. 3 段永彪,董新宇,徐文鹏.人工智能赋能政府监管的影响因素与实现机制[J].电子政务,2024,(1):40-53. 4 王洛忠.公共政策学[M].北京:北京大学出版社,2023:12-14. 5 曾润喜,杨璨.信息时代的政策茧房现象与政策传播效能提升路径研究[J].中国行政管理,2023,(9):132-141. 6 施惠玲,杜欣.政治传播内容中政治信息与政治话语的区分及其意义[J].南京社会科学,2016,(3):115-120. 7 段林毅.政策传播论[M].湖南:湖南人民出版社,2003:41. 8 [美]哈罗德·拉斯韦尔.社会传播的结构与功能[M].何道宽译,北京:中国传媒大学出版社,2015:35. 9 温雯,戴俊聘.场景理论的范式转型及其中国实践 [J].山东大学学报(哲学社会科学版),2021,(1): 44-53. 10 施惠玲.丰富当代主流意识形态传播实践和研究的面向:关切政策传播[J].青年记者,2023,(19): 52-53. 11 [美]帕梅拉·J·休梅克,蒂姆·P·沃斯.把关理论[M].北京:中国人民大学出版社,2022. 12 米加宁.生成式治理:大模型时代的治理新范式[J].中国社会科学,2024,(10):119-139. 13 童兵.大众传媒和公共政策的关系[J].当代传播,2008,(6):13-15. 14 张宏莹.秩序修辞与协同:社交媒体语境下政府公共传播的逻辑重构与多元实践[J].国际新闻界,2023,(9):143-146. 15 喻国明,苏建威.生成式人工智能浪潮下的传播革命与媒介生态——从ChatGPT到全面智能化时代的未来[J].新疆师范大学学报(哲学社会科学版),2023,(5):81-90. 16 熊铮铮,徐旭龙.智能传播时代网络舆情治理研究[J].新闻战线,2024,(22):48-51. 17 李春成,魏诗强.政策谣言的生发与治理[J].行政论坛,2019,(2):66-72. 18 胡泳.人工智能驱动的虚假信息:现在与未来[J].南京社会科学,2024,(1):96-109. 19 习近平出席金砖国家领导人第十五次会晤并发表重要讲话强调秉持开放包容、合作共赢的金砖精神,以金砖责任应对共同挑战,以金砖担当开创美好未来[N].人民日报,2023-08-23(1). 20 张文祥,沈天健,孙煕遥.从失序到再序:生成式人工智能下的信息秩序变局与治理[J].新闻界,2023,(10):41-51. 21 孔德臣、侯勇.生成式人工智能的意识形态治理:契机、风险与应对——从ChatGPT到Sora[J].探索,2024,(4):123-138. 22 中央网信办秘书局,工业和信息化部办公厅,公安部办公厅,市场监管总局办公厅.关于开展“清朗·网络平台算法典型问题治理”专项行动的通知[EB/OL].(2024-11-24)[2024-12-27]. https://www.cac.gov.cn/2024-11/24/c_1734143936205514.htm. 23 张诗濠,李赟,李韬.ChatGPT类生成式人工智能的风险及其治理[J].贵州社会科学,2023,(11):138-143. |
[1] |
Cui Han-xing, Zhao Qi-lan, Song Guang, Guo Jun-Jie. On Risk Assessment Methods for Hazardous Goods Transportation Considering Road Network Dynamics[J]. journal6, 2025, 24(1): 63-74. |
[2] |
MENG Miao-miao, ZHANG Zeng-lian, LI Pei-yi. Research on the Threshold Effect and Spatial Effect of FinTech on Regional Financial Risks[J]. journal6, 2025, 24(1): 99-110. |
[3] |
ZHANG Hui, MA Wang-bo. Agricultural Development in the Era of Big Data: International Frontiers and Chinese Practices[J]. journal6, 2024, 23(2): 34-45. |
[4] |
FAN Zhi-yong. On the Change of Circumstances in Bankruptcy Reorganization Plan[J]. journal6, 2023, 22(4): 137-144. |
[5] |
ZHOU Shao-ni, ZHOU Zhi-tian, ZHANG Qiu-sheng. Formation, Analysis and Resolution of China’s National Railway Debt Risks[J]. journal6, 2023, 22(4): 52-62. |
[6] |
WANG Huan-huan, ZHAO Qi-lan. Hierarchical Analysis of Risk Factors in Food Supply Chain During the Epidemic Prevention and Control[J]. journal6, 2022, 21(4): 35-44. |
|
|
|
|