Abstract:With the advent of the information revolution and big data revolution, agricultural production has undergone great changes. In the new era, traditional agriculture is gradually facing bottlenecks and is heading for a transition towards new digital agriculture development models such as precision agriculture and smart farming. Since the 21st century, countries around the world have explored more than ten fields of agricultural big data, developed a series of technologies and methods for data collection, storage, and analysis, and achieved significant application results. As China is facing a series of problems such as a large population and limited arable land, it should keep up with technological progress and accelerate the development of agricultural new quality productive forces based on China’s national conditions and agricultural characteristics. It should focus on basic research on agricultural big data, industry standards, infrastructure, supply chain management, finance and insurance so as to promote high-quality agricultural development, accelerate efforts to build China into a strong agricultural country, and modernize agriculture and rural areas.
张辉, 马望博. 大数据时代的农业发展:国际前沿与中国实践[J]. 北京交通大学学报(社会科学版), 2024, 23(2): 34-45.
ZHANG Hui, MA Wang-bo. Agricultural Development in the Era of Big Data: International Frontiers and Chinese Practices. journal6, 2024, 23(2): 34-45.
1 王桂军, 张辉. 新时代建设现代化产业体系:成就、问题与路径选择[J]. 教学与研究, 2023,(6): 12-30. 2 孙忠富, 杜克明, 郑飞翔, 等. 大数据在智慧农业中研究与应用展望[J]. 中国农业科技导报, 2013, 15(6): 63-71. 3 许世卫, 王东杰, 李哲敏. 大数据推动农业现代化应用研究[J]. 中国农业科学, 2015, 48(17): 3429-3438. 4 尹成杰. 关于推进农业保险创新发展的理性思考[J]. 农业经济问题, 2015, 36(6): 4-8. 5 杨春朝, 陈莹, 高国兴, 等. 大数据在农业生产中的应用研究综述与展望[J]. 科技创新与应用, 2024, 14(2): 6-10. 6 BELL J C, BUTLER C A, THOMPSON J A. Soil-Terrain Modeling for Site-Specific Agricultural Management[M/OL]//ROBERT P C, RUST R H, LARSON W E. ASA, CSSA, and SSSA Books. Madison: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2015: 209-227[2024-03-12]. http://doi.wiley.com/10.2134/1995.site-specificmanagement.c16. 7 张辉, 石琳. 数字经济:新时代的新动力[J]. 北京交通大学学报(社会科学版), 2019, 18(2): 10-22. 8 KAMILARIS A, KARTAKOULLIS A, PRENAFETA-BOLDú F X. A review on the practice of big data analysis in agriculture[J]. Computers and Electronics in Agriculture, 2017, 143: 23-37. 9 CRAVERO A, BUSTAMANTE A, NEGRIER M, et al. Agricultural Big Data Architectures in the Context of Climate Change: A Systematic Literature Review[J]. Sustainability, 2022, 14(13): 7855. 10 TRIPATHI S, SRINIVAS V V, NANJUNDIAH R S. Downscaling of precipitation for climate change scenarios: A support vector machine approach[J]. Journal of Hydrology, 2006, 330(3-4): 621-640. 11 NATIVI S, MAZZETTI P, SANTORO M, et al. Big Data challenges in building the Global Earth Observation System of Systems[J]. Environmental Modelling & Software, 2015, 68: 1-26. 12 SCHNASE J L, DUFFY D Q, TAMKIN G S, et al. MERRA Analytic Services: Meeting the Big Data challenges of climate science through cloud-enabled Climate Analytics-as-a-Service[J]. Computers, Environment and Urban Systems, 2017, 61: 198-211. 13 WARDLOW B D, EGBERT S L, KASTENS J H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains[J]. Remote Sensing of Environment, 2007, 108(3): 290-310. 14 LUCAS M T, CHHAJED D. Applications of location analysis in agriculture: a survey[J]. Journal of the Operational Research Society, 2004, 55(6): 561-578. 15 SCHUSTER E, KUMAR S, SARMA S, et al. Infrastructure for data-driven agriculture: identifying management zones for cotton using statistical modeling and machine learning techniques[C/OL]//2011 8th International Conference & Expo on Emerging Technologies for a Smarter World. New York: IEEE, 2011: 1-6[2024-02-23]. http://ieeexplore.ieee.org/document/6163052/. 16 CHEDAD A, MOSHOU D, AERTS J M, et al. AP—Animal Production Technology[J]. Journal of Agricultural Engineering Research, 2001, 79(4): 449-457. 17 MARCOT B G, HOLTHAUSEN R S, RAPHAEL M G, et al. Using Bayesian belief networks to evaluate fish and wildlife population viability under land management alternatives from an environmental impact statement[J]. Forest Ecology and Management, 2001,153:29-42. 18 WALDHOFF G, CURDT C, HOFFMEISTER D, et al. ANALYSIS OF MULTITEMPORAL AND MULTISENSOR REMOTE SENSING DATA FOR CROP ROTATION MAPPING[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, I-7: 177-182. 19 FUCHS A, WOLFF H. Drought and Retribution: Evidence from a Large-Scale Rainfall-Indexed Insurance Program in Mexico[M/OL]. Washington, DC :World Bank , 2016[2024-02-23]. https://openknowledge.worldbank.org/handle/10986/23902. 20 TESFAYE K, SONDER K, CAIRNS J, et al. Targeting Drought-Tolerant Maize Varieties in Southern Africa: A Geospatial Crop Modeling Approach Using Big Data[J]. International Food and Agribusiness Management Review, 2016, 19. 21 ARMSTRONG L J, DIEPEVEEN D, MADDERN R. The application of data mining techniques to characterize agricultural soil profiles[C]// Australasian conference on Data mining and analytics,2007. 22 GUTIéRREZ P A, LóPEZ-GRANADOS F, PE?A-BARRAGáN J M, et al. Logistic regression product-unit neural networks for mapping Ridolfia segetum infestations in sunflower crop using multitemporal remote sensed data[J]. Computers and Electronics in Agriculture, 2008, 64(2): 293-306. 23 URTUBIA A, PéREZ-CORREA J R, SOTO A, et al. Using data mining techniques to predict industrial wine problem fermentations[J]. Food Control, 2007, 18(12): 1512-1517. 24 PIERNA J A F, BAETEN V, RENIER A M, et al. Combination of support vector machines (SVM) and near‐infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds[J]. Journal of Chemometrics, 2004, 18(7-8): 341-349. 25 FRELAT R, LOPEZ-RIDAURA S, GILLER K E, et al. Drivers of household food availability in sub-Saharan Africa based on big data from small farms[J]. Proceedings of the National Academy of Sciences, 2016, 113(2): 458-463. 26 MCQUEEN R J, GARNER S R, NEVILL-MANNING C G, et al. Applying machine learning to agricultural data[J]. Computers and Electronics in Agriculture, 1995, 12(4): 275-293. 27 BECKER-RESHEF I, JUSTICE C, SULLIVAN M, et al. Monitoring Global Croplands with Coarse Resolution Earth Observations: The Global Agriculture Monitoring (GLAM) Project[J]. Remote Sensing, 2010, 2(6): 1589-1609. 28 张浩然, 李中良, 邹腾飞, 等. 农业大数据综述[J]. 计算机科学, 2014, 41(S2): 387-392. 29 温涛, 陈一明. 数字经济与农业农村经济融合发展:实践模式、现实障碍与突破路径[J]. 农业经济问题, 2020,(7): 118-129. 30 OSINGA S A, PAUDEL D, MOUZAKITIS S A, et al. Big data in agriculture: Between opportunity and solution[J]. Agricultural Systems, 2022, 195. 31 MEYER GEORGE E, CAMARGO NETO J, JONES D D, et al. Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images[J]. Computers and Electronics in Agriculture, 2004, 42(3): 161-180. 32 SAKAMOTO T, YOKOZAWA M, TORITANI H, et al. A crop phenology detection method using time-series MODIS data[J]. Remote Sensing of Environment, 2005, 96(3-4): 366-374. 33 BARRETT B, NITZE I, GREEN S, et al. Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches[J]. Remote Sensing of Environment, 2014, 152: 109-124. 34 THENKABAIL P S, GANGADHARARAO P, BIGGS T W, et al. Spectral Matching Techniques to Determine Historical Land-use/Land-cover (LULC) and Irrigated Areas Using Time-series 0.1-degree AVHRR Pathfinder Datasets[J]. PHOTOGRAMMETRIC ENGINEERING,2007, 73(9):1029-1040. 35 Jó?WIAK á, MILKOVICS M, LAKNER Z. A Network-Science Support System for Food Chain Safety: A Case from Hungarian Cattle Production[J].The International Food and Agribusiness Management Review, 2016, 19 (A):17-42. 36 SAWANT M, URKUDE R, JAWALE S. Organized Data and Information for Efficacious Agriculture Using PRIDETM Model[J]. International Food and Agribusiness Management Review, 2016, 19. 37 赵春江. 智慧农业的发展现状与未来展望[J]. 中国农业文摘-农业工程, 2021, 33(6): 4-8. 38 许世卫. 农业大数据与农产品监测预警[J]. 中国农业科技导报, 2014,(5): 14-20. 39 许世卫. 农业高质量发展与农业大数据建设探讨[J]. 农学学报, 2019, 9(4): 13-17. 40 张辉, 张明哲. 数字经济国际合作助力共建“一带一路”高质量发展[J]. 北京交通大学学报(社会科学版), 2023, 22(4): 1-10. 41 王越晗, 夏煜. 基于CiteSpace的数字农业国际研究热点与趋势分析[J]. 湖北农业科学, 2023, 62(12): 178-187. 42 张辉, 唐琦. 新质生产力形成的条件、方向及着力点[J]. 学习与探索, 2024,(1): 82-91.