|
|
The Spatial and Temporal Difference of Logistics Industry Efficiency in Logistics Hub Cities and Its Convergence |
LIU Hong-wei, YANG Rong-lu, SHI Hong-juan |
School of Business, Anhui University, Hefei Anhui 230601, China |
|
|
Abstract This paper uses SBM-DEA model to calculate the efficiency values of the logistics industry in 60 logistics hub cities within 10 years, and analyzes the convergence of efficiency in the eastern, central and western regions. The results show that the annual average efficiency value of eastern hub cities is the highest, and among them the efficiency values of Guangzhou, Shenzhen and Zhoushan stay at 1 during the whole period. The efficiency of logistics industry in central hub cities has risen rapidly and surpassed that of eastern cities in 2019 by a narrow margin, and among them Wuhu, Nanyang, Anyang and Yueyang have shown strong momentum. The efficiency value of the logistics industry in the western hub cities is relatively low, making them the bottleneck that restrict the improvement of logistics efficiency of hub cities all over the nation. The logistics industry efficiency in all of the central and eastern hub cities show prominent catch-up effect and are generally high, but the logistics efficiency of hub cities in the western region tends to stabilize gradually at their own different area, and shows no catch-up effect, making it impossible for hub cities in western region to narrow the gap with central and eastern hub cities. In order to improve the efficiency of logistics industry in hub cities, we should face up to the short-term inefficiency due to the fact that logistics has not effectively fulfilled its vanguard role, improve the logistics network system with hub as the key nodes, break the boundary restrictions of hub cities by using the backbone circulation channels, and drive and lead logistics needs by organizing goods sources and transporting goods in western hub cities. The role of the national logistics hub in promoting the efficiency of the logistics industry of the host city has not yet been fully shown, so we should continue to pay attention to the impact of the hub construction policies on urban logistics.
|
Received: 23 March 2021
|
|
|
|
|
1 刘承良,管明明. 低碳约束下中国物流业效率的空间演化及影响因素[J]. 地理科学, 2017, 37(12): 1805-1814. 2 邢虎松. 城市物流业规划存在的主要问题及对策[J]. 北京交通大学学报(社会科学版), 2020, 19(4): 110-115. 3 刘满芝,周梅华,杨娟. 基于DEA的城市物流效率评价模型及实证[J]. 统计与决策,2009,(6):50-52. 4 张中强. 我国东部地区区域物流发展效率分析——以我国东部31个地市级地区为例[J]. 中国社会科学院研究生院学报,2012,(1):77-81. 5 王琴梅,谭翠娥. 对西安市物流效率及其影响因素的实证研究——基于DEA模型和Tobit回归模型的分析[J]. 软科学,2013,27(5):70-74. 6 钱吴永,祁尖?. 基于节点城市的物流产业效率与经济增长协同发展测度研究[J]. 工业技术经济,2018,37(5): 19-28. 7 王东方,董千里?. 中国城市物流发展空间结构演化及影响因素[J]. 北京交通大学学报(社会科学版),2019,18(4): 125-139. 8 杨扬,李莉诗?. 国际陆港城市物流能力与社会经济发展协调评价——以昆明市为例[J]. 北京交通大学学报(社会科学版),2019,18(3):129-137. 9 刘明,杨路明?. 区域物流的产业效率、空间互动与协调发展——基于全国277个地市级城市的数据实证[J]. 中国流通经济,2019,33(8): 34-44. 10 张林,姚进才,王钦, 等. 发展物流产业助推区域经济增长的协同凝聚研究——基于国家物流枢纽城市面板数据[J]. 城市发展研究,2021,28(5):1-6. 11 黄由衡,唐岚. 物流枢纽建设对承载城市经济增长的影响——基于40个国家物流枢纽城市的面板数据分析[J]. 物流科技,2021,44(9):103-106+110. 12 CHARNES A, COOPER W, RHODES E. Measuring the efficiency of decision making units [J]. European Journal of Operational Research, 1978, 2(6): 429-444. 13 刘翠萍, 李武. 中国物流产业效率评价文献综述——基于数据包络分析法[J]. 中国流通经济,2016,30(11): 12-21. 14 张竟轶,张竟成. 基于三阶段DEA模型的我国物流效率综合研究[J]. 管理世界,2016,(8): 178-179. 15 CHURCHILL S A, INEKWE J, IVANOVSKI K. Stochastic convergence in per capita CO2 emissions: Evidence from emerging economies, 1921—2014[J]. Energy Economics, 2020, 86. DOI: 10.1016/j.eneco.2019.104659. 16 林光平,龙志和,吴梅. 中国地区经济σ-收敛的空间计量实证分析[J]. 数量经济技术经济研究, 2006,(4):14-21+69. 17 PHAM M D, ZELENYUK V. Slack-based directional distance function in the presence of bad outputs: theory and application to Vietnamese banking[J]. Empirical Economics, 2018, 54(1): 153-187. 18 TONE K. A slack-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498-509. 19 HUANG J, ZHENG X, WANG A, et al. Convergence analysis of China’s energy intensity at the industrial sector level[J]. Environmental Science and Pollution Research, 2019, 26(8): 7730-7742. 20 SUN H, KPORSU A K, TAGHIZADEH-HESARY F, et al. Estimating environmental efficiency and convergence: 1980 to 2016[J]. Energy, 2020, 208.DOI:10.1016/j.energy.2020.118224. 21 周宾?. 区域经济高质量发展的驱动力效率分解与TFP变化收敛性分析[J]. 经济与管理评论, 2020,36(2):133-148. 22 杨琛?. 中国工业生态效率时空差异及收敛性分析[J]. 宏观经济研究,2020,(7):106-113+137. 23 XU H, WANG Y, LIU H, et al. Environmental efficiency measurement and convergence analysis of interprovincial road transport in China[J]. Sustainability, 2020, 12(11).DOI:10.3390/su12114613. 24 俞佳立,钱芝网. 长江经济带物流产业效率的时空演化及其影响因素[J]. 经济地理,2018,38(8): 108-115. 25 张璇,杨雪荣,王峰. 新丝绸之路经济带物流效率评价——基于三阶段DEA实证分析[J]. 学习与实践,2016,(5): 21-32. 26 戢晓峰,刘丁硕. 物流产业效率与交通优势度耦合协调水平测度——以中国36个主要城市为例[J]. 城市问题,2019,(2): 61-68. 27 唐建荣,杜娇娇,唐雨辰. 环境规制下的区域物流效率可持续发展研究[J]. 经济与管理评论,2018,34(5): 138-149. 28 牛晴晴,张宁. 基于数据包络分析的山东省17城市物流效率分析[J]. 物流技术,2017,36(8): 108-111. 29 梅国平,龚雅玲,万建香, 等?. 基于三阶段DEA模型的华东地区物流产业效率测度研究[J]. 管理评论,2019,31(10): 234-241. 30 臧新,陆俊杰. 我国物流业能源效率的地区差异及影响因素——基于DEA-BCC模型的实证研究[J]. 北京交通大学学报(社会科学版),2018,17(3):101-111. |
|
|
|